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Abstract

The simultaneous stochastic optimization of mining complexes aims to optimize the dif-

ferent components in a single optimization model under grade, material type and, in the

present work, equipment production uncertainty, capitalizing on the synergies between the

various components and the quantified variability and uncertainty of the materials mined,

to meet production targets and capacities better. The uncertainty and variability associated

with the different material sources are incorporated in the optimizationmodel using stochas-

tic simulations, also employed to quantify the uncertainty related to equipment production,

generated conditional to historical mining and processing production data collected from

different equipment in the mining complex. The current work presents an application to in-

tegrate uncertainty and decisions about mining capacities dictated by the available mining

equipment (e.g. trucks and shovels) and crushers’ production capacities in the simultane-

ous stochastic optimization model. The application of the approach at a large copper mining

complex composed of two deposits, three stockpiles, five crushers, three mills, two leach

pads, a waste dump and several different mining equipment types and models indicates that

the stochastic schedule has higher chances of meeting the production targets and capacities

while achieving a substantial increase in the net present value (NPV) of the mining complex

when compared to the conventional plan.

Keywords: Mining complex; Stochastic simulations; Simultaneous stochastic optimization.
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1 Introduction

Mining operations are most commonly comprised of multiple components such as mineral deposits,

stockpiles, mills, leach pads, waste dumps, several different types of equipment and customers.

These elements together represent a mineral value chain, also known in the literature as a mining

complex [11; 18; 22]. The mining complex can be viewed as a transfer function that involves com-

plex interactions, where the material extracted from the mines flows through different components

(e.g. from mines to crushers and later to mills) and is transformed into sellable products (e.g. metal

concentrate) near the end of the chain. Since this flow involves complex non-linear transformations,

it becomes difficult the use of conventional optimizers to tackle the problem and simultaneously

optimize the entire complex, with the traditional optimizer’s approach being characterized by solv-

ing each component individually or sequentially (e.g. optimizing the extraction sequence separately

from the quality of material at mills). Such an approach does not benefit from the interaction and

cooperation of different components, leading to suboptimal solutions for the value chain [18].

Nevertheless, past efforts directed to the simultaneous optimization of mining complexes aimed

to include more decisions in the optimization process, such as the model presented by Hoerger et al.

[13] for Newmont’s Nevada mining complex that simultaneously optimizes the timing of open-pit

layback, underground stope development, capital expenditure, the timing of processing plant start-

ups and shutdowns, and, material routing decisions. Whittle and Whittle [33] presents a global opti-

mization model that includes optimization of extraction sequence, mining rate, cut-off grade policy,

processing path selection and stockpiling strategy, which is further developed in Whittle [32], ex-

pressing grades as an additive property and allowing the integration of other aspects of stockpiling

and transportation in the global asset optimization model, generating the Prober C algorithm. How-

ever, besides the typical limitations of the conventional approaches, such as aggregation of mining

blocks and lack of genuinely simultaneous optimization of different components, the main drawback

of the models mentioned above is their inability to account for the uncertainty from various sources,

especially uncertainty in grades and material supply since conventional optimization techniques rely

on the use of a single estimated orebody model as input to the optimization process, which is unable

to reproduce the in-situ variability of the deposit’s grades and is but a smooth representation of the

orebody [4]. Material supply uncertainty has long been recognized as the primary cause of technical

risk in mining operations [31], leading to unexpected deviations in production targets [5; 7; 8; 25].

The simultaneous stochastic optimization of mining complexes overcomes the limitations of the
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previous models by considering one single optimization model to simultaneously optimize all differ-

ent components of a mining complex under uncertainty. Montiel and Dimitrakopoulos [18] propose

a model that simultaneously optimizes block extraction, destination, processing streams utilization,

operating modes and transportation alternatives under grade and material type uncertainty, later ex-

tended in Montiel and Dimitrakopoulos [19, 20]; Montiel et al. [21] to include underground mines

and a metaheuristic algorithm to solve the large optimization model of mining complexes.

Goodfellow and Dimitrakopoulos [11] and [10] present a model that simultaneously optimizes

block extraction decisions, destination policies based on block multi-element clustering and pro-

cessing stream utilization strategies under grade and material type uncertainty, later extended in

Goodfellow and Dimitrakopoulos [9] to include investment decisions. These simultaneous stochas-

tic optimization models can truly capitalize on the existing synergies between the mining complex

components while focusing on the value of the products sold rather than the value of mining blocks

and being capable of integrating the uncertainty in material supply and the grade variability, produc-

ing mining schedules better suited to meet blending targets and production forecasts, which leads to

higher project net present values (NPV). Spatial grade variability and uncertainty are quantified by

stochastically generated orebody simulations [12; 14; 17; 28].

Recent work has further extended and developed the simultaneous stochastic optimization of

mining complexes framework [3], quantifying uncertainty from different sources [15; 29]. Efforts

to include equipment production uncertainty in a stochastic optimization model were more recently

proposed byQuigley andDimitrakopoulos [23] andBoth andDimitrakopoulos [1], works focused on

a stochastic optimization of short-term production scheduling with equipment allocation. In the pro-

posed models, the uncertainty in equipment production is also quantified by equiprobable stochastic

simulations, with Quigley andDimitrakopoulos [23] generating the simulations conditional to equip-

ment historical data by Monte Carlo methods. Both and Dimitrakopoulos [1] show the benefits of

simultaneously optimizing the mining complex with equipment decisions, which generates savings

in costs related to equipment movements and better equipment utilization. However, short-term

scheduling is constructed in lower timescales. It aims to develop an operational plan for sub-periods

of the initial long-term production scheduling, for which the extraction of given areas (or blocks in

a given period of the long-term plan) are assumed to be completely mined. Since later planning and

optimization relies on these assumptions, having a long-term production schedule that accounts for

equipment uncertainty and respects the equipment production capacities can prove beneficial, given

that both initial forecasts and later short-term optimization would be based on schedules that already
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account for realizable equipment production.

The present work aims to apply the simultaneous stochastic optimization framework to incor-

porate the equipment production uncertainty and, along with geological uncertainty, generate long-

term schedules better suited to meet production targets and capacities. In the following sections, the

method utilized is first presented. An overview of the copper mining complex used in the study is

shown, with a brief review of the risk analysis of the mining complex current conventional plan per-

formed under joint equipment and geological uncertainty done in Resende Silva and Dimitrakopou-

los [27]. Results and discussion are presented next, and conclusions follow in the last section.

2 Stochastic scheduling optimization method

The approach proposed herein is based on the model for simultaneous optimization of mining com-

plexes under uncertainty proposed in Goodfellow and Dimitrakopoulos [11], which is extended in

the present work to include uncertainty and constraints related to equipment production, i.e. mining

and crusher capacities in the present case. The work presented highlights the applied aspects of the

method with an application at a large copper mining complex with over 4 million binary variables.

First, definitions, notation and the different decision variables are provided and discussed. Next, the

objective function and constraints used in the present work to include uncertainty related to equip-

ment production in the context of simultaneous optimization of mining complexes are outlined.

2.1 Definitions, notation, and decision variables

The notations used in this section are as follows: M represents a group ofmines, whereBm represents

the set of mining blocks b for a given mine m and MCb,t represents the mining cost of block b in

period t. To enable access to block b, the extraction of its over-lying blocks, represented by a setOb,

must occur before or at period t. The set of scenarios that quantify the joint uncertainty in grades and

material types is defined by S. The total number of scheduling periods is represented byT. Extracted

material from mines can either be stockpiled, processed after crushing or sent to waste, where va,i,t,s

represents the amount of property a at location i in period t and scenario s. SSP represents the set

of stockpiles, and SCi,a,t represents the stockpiling cost of stockpile i ∈ SSP for property a in

period t ∈ T. RHi,a,t denotes the cost of re-handling material from a given stockpile i ∈ SSP

for property a in period t ∈ T. The set of crushers is denoted by SC with CRi,a,t representing the
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crushing cost of material in crusher i ∈ SC for property a in period t ∈ T. P represents the set

of processing destinations (e.g. mills and leach pads), PFi,a,t represents the profit for recovered

product a within processing destination i ∈ P in period t ∈ T and PCi,a,t represents the processing

cost for processing destination i ∈ P for property a in period t ∈ T. Properties such as metal

tonnage, rock tonnage and ore tonnage are represented byHp and are calculated by adding amounts

of metal, rock and ore tonnages processed at different locations in the mining complex, being called

primary attributes. Properties such as copper head grade and recovered metal are calculated based

on the primary attributes reaching the different locations, represented by Hs and called hereditary

attributes, i.e. the mass of different products recovered. To quantify the uncertainty for both the

materials and attributes, it is assumed that each block b ∈ Bm has a simulated material classification

or attributes defined by βa,b,s ∀a ∈ Hp, ∀s ∈ S.

Moreover, a mining complex usually operates following production targets for different at-

tributes, such as material quality and capacity targets. Pg represents attributes subject to the material

quality targets, the set Pc represents attributes subject to capacity targets, and Pe represents attributes

subject to the targets concerning the mining and crusher capacities, the latter concerning the equip-

ment whose uncertainty is being added. Given these targets, c+a,i,t and c−a,i,t represent the penalty

costs associated with deviations from maximum/upper and minimum/lower production targets, re-

spectively, for property a in each period t ∈ T. Profits and costs from operations are discounted

using an economic discount factor rec (e.g., PFi,a,t = PFi,a,1/(1 + rec)
t), while the cost of devia-

tion from targets is also discounted using a risk discount rate rrisk (e.g., c+a,i,t = c+a,i,1/(1 + rrisk)
t)

defined as in Dimitrakopoulos and Ramazan [6] and Ramazan and Dimitrakopoulos [24], and whose

objective is to defer the risk of not meeting production targets to later years when more information

is available.

Mineability targets are also included in the model to ensure that the production schedules are

practically mineable, where Wb and Vb are the specified mining width and sink rate, respectively.

Then dsmooth
b,t is defined as the number of blocks scheduled in different periods than b inside a given

mining width around b, with csmooth
b,t, being the penalty cost associated with not scheduling blocks

inside the mining width in the same mining period [6; 29]. Similarly, dsinkb,t,v is defined as the number

of blocks scheduled in the same period as b inside a given vertical window, with csinkb,t being the

penalty cost associated with scheduling more blocks than allowed inside the mining sink rate [2; 29].

The model proposed by Goodfellow and Dimitrakopoulos [11] presents three different types of

decision variables: (i) mine extraction sequence variables (xb,t ∈ {0, 1}), which define whether

6



(1) or not (0) a block b ∈ Bm is extracted in period t ∈ T; (ii) cluster destination policy variables

(zc,j,t ∈ {0, 1}), which define whether (1) or not (0) cluster c ∈ C is sent to one of the possible

destinations j in period t for a given material type, where the cluster destination policy is based on

clusters defined over multiple elements of interest, and; (iii) processing stream utilization variables

(yi,j,t,s ∈ [0, 1]) defining the proportion of material sent from a location i to a subsequent location

j in period t and under scenario s. Beyond the decision variables, other continuous variables that

keep track of deviations from different targets are also included in the model, with surplus variables

d+a,i,t,s representing the excess over maximum targets Ua,i,t for property a in period t and scenario s.

Conversely, shortage variables d−a,i,t,s represent shortage from minimum targets La,i,t for property

a in period t and scenario s. For the simulated mining and crusher capacities, these values are

represented herein by CAP z
a,i,t for property a ∈ Hp in period t ∈ T and a given probability zone

z ∈ Z within a location i ∈ M ∪ Sc.

2.2 Objective function and constraints

The objective function (equation (2.1)) of the stochastic model is a two-stage function that max-

imizes the value of the products generated from a mining complex and delivered to customers or

spot market, while minimizing the deviations from capacities, blending and mineability targets, un-

der grade, material type and production uncertainty. Part I in the objective function represents the

profits of different products produced and sold. Part II is the processing cost of the material at the

various processing destinations. Part III describes the crushing cost of crushers. Part IV relates to

the stockpiling costs, and Part V represents the cost of re-handling material from different stockpiles.

Part VI relates to the cost of deviations from the material quality targets at the various processing

destinations (e.g. target copper grade). At the same time, Part VII represents the deviations from

target capacities at the different processing destinations and stockpiles. In the same way, Part VIII

represents the deviations from simulated mining and crusher capacities within a given probability

zone z ∈ Z . Part IX relates to the mining cost at the different mines, and Parts X and XI represent

the costs associated with the mineability targets aiming to smooth the schedules.
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max

{
1

|S|

{∑
s∈S

∑
t∈T

{∑
i∈P

∑
a∈Hs

PFa,i,t · va,i,t,s︸ ︷︷ ︸
Part I

−
∑
i∈P

∑
a∈Hp

PCa,i,t · va,i,t,s︸ ︷︷ ︸
Part II

−
∑
i∈SC

∑
a∈Hp

CRa,i,t · va,i,t,s︸ ︷︷ ︸
Part III

−
∑

i∈SSP

∑
a∈Hp

SCa,i,t · va,i,t,s︸ ︷︷ ︸
Part IV

−
∑

i∈SSP

∑
a∈Hp

RHa,i,t · va,i,t,s︸ ︷︷ ︸
Part V

−
∑
i∈P

∑
a∈Pg

c+a,i,t · d
+
a,i,t,s︸ ︷︷ ︸

Part V I

−
∑

i∈SSP∪P

∑
a∈Pc

c+a,i,t · d
+
a,i,t,s︸ ︷︷ ︸

Part V II

−
∑

i∈M∪SC

∑
a∈Pe

∑
z∈Z

c+a,i,t,z · d
+
a,i,t,s,z︸ ︷︷ ︸

Part V III

}}

−
∑
t∈T

∑
m∈M

∑
b∈Bm

[(
MCb,t · xb,t

)
︸ ︷︷ ︸

Part IX

+
(
csmooth
b,t · dsmooth

b,t

)
︸ ︷︷ ︸

Part X

]

−
∑
t∈T

∑
m∈M

∑
b∈Bm

∑
v∈Vb

(
csinkb,t · dsinkb,t,v

)
︸ ︷︷ ︸

Part XI

}

(2.1)

In the current application, the different mines and crushers in the mining complex have their

mining and production capacities, respectively, determined by simulations constructed from histori-

cal data from shovels, trucks, and crushers production for two years of mining activities. Uncertainty

related to equipment production results in inconsistent schedule forecasts with fixed capacities at the

mines and crushers. These forecasts may fall short, as shown by Resende Silva and Dimitrakopoulos

[27] and consequently lead to fewer metal-re recovered tonnages. A different approach is used in

the present work to overcome those issues by integrating the equipment production scenarios into

the optimization process and producing schedules more fit to handle this uncertainty.

The mining and crusher capacity simulations are added to the model employing what is herein

called probability zones. These probability zones are constructed using the different percentiles

calculated using the set of simulations for the equipment, where a given probability zone is defined

by the area between any two consecutive percentiles and describes the confidence in the realization

of a given capacity value, e.g. the 10th percentile from the simulations represents a 90% chance

of having that or lower value as reality. Therefore, the 90% zone is the area given by the 10th

percentile and the next calculated percentile. For themined tonnages at the different mines, the single

extraction sequence is linked to the simulated capacities using the constraint shown in equation (2.2),

where the deviations from the simulated capacity within a given probability zone are calculated and

penalized in the objective function, producing a sequence that is capable of obeying the different
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scenarios. Different penalties are applied to different probability zones z ∈ Z . The size of the

penalty will be translated as the willingness of risk acceptance by the planner or decision-maker, i.e.

risk-averse decisions would increase penalties on deviations even within zones of a high probability

of capacity realization (e.g., deviations within the 90% zone). In comparison, risk-tolerant decisions

would choose to penalize only deviations falling into zones of a low probability of realization (e.g.,

deviations happening in the 50% or 30% zones). The optimizer then perceives these penalties for

deviations from the different probability zones and constructs a schedule that aims to respect the

simulated capacities given the risk willingness of the decision-maker.

( ∑
b∈Bm

βa,b,s · xb,t

)
− d+a,m,t,s,z − CAP z

a,m,t ≤ 0, ∀a ∈ Hp,m ∈ M, t ∈ T, s ∈ S, z ∈ Z (2.2)

Moreover, the penalty for deviations within a given zone is applied solely to the deviations

inside that zone, meaning that the approach proposed does not overly penalize deviations, which can

constrain the problem too much. Similarly, the simulated crusher production capacities are related

to the crushed tonnages, as shown in equation (2.3). Other constraints implemented in the model

are reserve, slope, capacity, destination policy, processing stream flow, blending and mineability

constraints, all detailed in Goodfellow and Dimitrakopoulos [11]; Kumar and Dimitrakopoulos [15].

va,i,t,s − d+a,i,t,s,z − CAP z
a,i,t ≤ 0, ∀a ∈ Hp, i ∈ Sc, t ∈ T, s ∈ S, z ∈ Z (2.3)

The simultaneous stochastic optimization model of mining complexes previously outlined is

constructed as a sizeable combinatorial optimization model with millions of binary decision vari-

ables and thousands of continuous decision variables. Given its size and the limitations of exact

methods in solving such a large optimization problem, metaheuristic algorithms are employed in the

solution approach used to solve the model, specifically multi-neighbourhood simulated annealing

with an adaptive neighbourhood search algorithm explained in Goodfellow and Dimitrakopoulos

[10, 11].

3 Application at a large copper mining complex

This section applies the proposed approach to a large copper mining complex. First, the mining com-

plex is outlined, where general information about its mineral value chain and conventional schedule
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is given. A constant factor scales economic parameters (e.g. prices and costs), material quality and

production targets used in the study for confidentiality reasons. Generic names are also used.

3.1 Overview of the copper mining complex

3.1.1 Mining complex and material flow

The copper mining complex consists of twomines (Mine A andMine B), having 194,000 and 65,350

blocks, respectively, with a selective mining unit (SMU) size of 25×25×15 m3. The stratigraphic

sequence of material is waste rock, followed by copper oxide, mixed and copper sulphide. The

mining complex produces copper concentrate and copper cathode as primary products and gold,

silver and molybdenum concentrate as secondary products. The material extracted from both mines

is classified into 4 different main material types (waste, oxide, high-grade sulphide, and low-grade

sulphide) based on geological and grade properties, i.e. concentrations of copper soluble (CuS)

and copper total (CuT), and copper soluble to copper total ratio. The extracted material can be sent

directly to one out of 10 destinations (5 crushers, 3 stockpiles, 1 bio leach pad for low-grade sulphide

and 1 waste dump). Material sent to one of the five different crushers is further directed to one of

the three processing mills (high-grade sulphide material) and an acid leach pad (oxide material) that

supplies material to the port and a copper cathode plant, respectively, following the flow of material

shown in figure 1.

Figure 1: The flow of material at the copper mining complex.
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From the orebody simulations provided by the mining complex, 15 stochastic simulations were

randomly selected for each mine, quantifying the uncertainty in grades and material types. Grade

uncertainty is quantified for two properties: copper soluble (CuS) and copper total (CuT). Figure 2

shows the cross-sections of two randomly selected simulations for the two deposits, where CuT

grades are displayed. Compared to the smoothed estimated deposits, the variability in the attribute

is easily seen in the simulations.

Besides the 15 orebody simulations, 50 simulations were selected for each mining and crush-

ing capacity from the simulations generated using the equipment historical data and the approach

proposed in Resende Silva and Dimitrakopoulos [27], where the cumulative distribution functions

(CDFs) for the different information is directly constructed from the historical data and the simulated

productions for the various equipment types generated by direct sampling of these CDFs. These 50

equipment simulations were then used to calculate the percentiles employed in developing the dif-

ferent probability zones as previously described. For the current work, the probability zones created

were the 90% zone between the 10th and 30th percentiles, the 70% zone between the 30th and 50th

percentiles, the 50% zone between the 50th and 70th percentiles, the 30% zone between the 70th and

90th percentiles and the 10% zone above the 90th percentile. Figure 3 shows examples of the mining

capacity and crusher production capacity simulations for Mine A and Crusher 5, respectively.

Figure 2: Examples of simulations of the copper total (CuT) grades for the two deposits
compared to the estimated model.
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Figure 3: Examples of mining capacity simulations for Mine B (left) and crushing produc-
tion capacity simulations for Crusher 5 (right) were used to calculate the percentiles and,
later, the probability zones.

3.1.2 Risk analysis of conventional long-term production schedule

The long-term mine production plan currently used at the mining complex is optimized using a

two-step optimization approach, where: (i) the extraction sequence of multiple mines is optimized

independently of each other using Whittle version 4.5.4 [30], a widely used software for strategic

mine planning, and; (ii) the destination of the extracted material follows the cut-off grade policy

presently used at the mining complex, based on Lane’s approach [16; 26], with the utilization of

different processing streams defined using a separate optimization model. Also, this two-step opti-

mization process is performed using estimated mineral deposits, shown in figure 2, as is the standard

practice in the mining industry. This long-termmining plan of the copper mining complex generated

with this two-step approach results in the conventional mine production plan [15].

Since the planned schedule is based on linear programming optimization, it results in a plan

with a partial block extraction sequence instead of a mixed-integer programming optimization. In

the risk analysis shown herein, the extraction sequence for the risk profiles was first made integer

using the same approach as in Resende Silva and Dimitrakopoulos [27]. The results presented next

quantify the risk of the schedule in meeting its production forecasts in the presence of uncertainty

of the material supply and the capacities of the equipment used and, for comparison reasons, given

the conventional plan does not forecast any material sent to the stockpiles in the first 10 years, the

same was maintained in the risk analysis. Economic parameters are the same, as shown in table 1.

The output values for a given project indicator (e.g. total tonnage extract, metal produced, cash
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Figure 4: Risk profiles for the simulated total available mining capacities for Mine A (left)
and Mine B (right) versus the planned total mined tonnage (red line).

flows) are reported using the 10th, 50th, and 90th percentiles risk profiles (P10, P50, and P90,

respectively). P10 represents a 90% chance of having at least that value, which means that the

values for 90% of the scenarios are higher than the P10. P50 represents the value at which 50% of

scenarios fall above and 50% fall below, and P90 represents a 90% chance of having a value below

it.

First, figure 4 shows the simulated mining capacities for the two mines for each of the 10 years

LOM. The planned mined tonnage is shown to be below the simulated capacities for most of the

periods. However, for periods 7 and 8, the conventional plan has an extraction sequence for Mine A

that surpasses the P50 simulated capacity, with the total mined tonnage extrapolating the P90 line in

period 8, which indicates that such plan has less than a 10% chance of being able to meet the planned

extracted tonnage, impacting the amount of material feeding the different processing destinations,

which can be seen in figure 5, where the cumulative difference in total recovered metal tonnages

at the three mills and two leach pads can be of up to 7% less than planned at the end of the 10

years (comparing with the P50) and 8% in the first 5 years. This difference is also affected by the

uncertainty in the material quality (e.g. copper grades).
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Figure 5: Total cumulative recoverable metal at processing destinations for the LOM (left)
and the first 5 years of operations (right).

Figure 6: Risk profiles for the cumulative discounted cash flows for the LOM (left) and the
first 5 years (right).

The differences between the recoverable copper seen in the initially planned forecasts and the

ones shown in the risk profiles come from the inability of the estimated models to reproduce the ac-

tual variability of the mineral deposits and the overestimation of ore tonnages mined and processed.

The decrease in recoverable copper observed in the risk analysis was caused by the joint uncertainty

in material supply. Production capacities have a direct impact on the discounted cash flows (DCF)

forecasted, such that at the end of the LOM, the cumulative DCF is seen to be 11% lower than the

one predicted by the conventional plan, as shown in figure 6, with the 5 first years already shown to

be 10% lower than the initial forecasts. Those differences carry an enormous impact, which can be

translated, for a large mining complex, into tens of millions less revenue than expected.

The inability to model the variability of the deposit’s properties also results in underestimating
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the total tonnages of metal sent to the waste, shown in figure 7, where close to 34% more copper is

sent to the waste during the 10 years LOM. This difference increases to 41% in the first 5 years.

For a complete comparison, the results shown in the following section present the planned fore-

casts, called “Planned,” and the P50 for the above risk analysis, referred to as “P50-Plan”.

Figure 7: Risk profiles for the cumulative discounted cash flows for the LOM (left) and the
first 5 years (right).

3.2 Simultaneous stochastic optimization

Given the simultaneous stochastic optimization of mining complexes described in section 2, the

orebody and equipment simulations, the economic and operational parameters shown in table 1 and

production targets decided by the mining complex based on studies about the configuration and

operating modes of their different processing destinations, the model for the mining complex was

optimized. The results of the stochastic optimization are presented next. As previously explained,

results are reported in P10, P50, and P90 risk profile percentiles.

The probability zones were defined as previously discussed and shown in figure 8, i.e. the 90%

zone is considered as the area between the 10th and 30th percentiles, the 70% zone is considered

as the area between the 30th and 50th percentiles, the 50% zone is considered as the area between

the 50th and 70th percentiles, the 30% zone is considered as the area between the 70th and 90th

percentiles and the 10% zone is considered as the area above the 90th percentile. In the current

application, penalties are applied only to deviations above the 50th percentile, i.e. deviations calcu-

lated within the 50%, 30% and 10% zones. For crusher capacities, penalties were $2.5/ton, $10/ton,

and $30/ton for each unit deviation within the 50%, 30% and 10% zones, respectively. For mining
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capacities, penalties were $2.5/ton, $2.5/ton, and $10/ton for each unit deviation within the 50%,

30% and 10% zones, respectively.

Attribute Value
Economic discount rate 8%
Risk discount rate 10%
Copper selling price (US$/ton metal recovered) 5511.55
Copper selling cost at mills (US$/ton metal recovered) 571.57
Copper selling cost at leach pads (US$/ton metal recovered) 551.55
Mining cost (US$/ton rock) – excluding hauling cost 0.76
Hauling cost based on depth (US$/ton rock) 0.40 – 1.27
Crushing cost (US$/ton ore) 0.61
Milling cost (US$/ton ore) 5.79
Cost re-handling material from stockpile (US$/ton ore) 0.20
Processing cost Oxide Leach Pad (US$/ton ore) 6.03
Processing cost Sulphide Leach Pad (US$/ton ore) 1.14
Recovery copper at mills (Mill 1, Mill 2 and Mill 3) 0.826, 0.830 and 0.804
Recovery copper at leach pads (Sulphide and Oxide Leach) 0.27 and 0.65
Slope angles for Mine A and Mine B 37º and 45º
Mining width (m) 200
Number of clusters for the different material types 30

Table 1: Economic and operational parameters used for the mining complex optimization.

The current conventional long-term schedule was optimized for a LOM of over 100 years. How-

ever, the present application focused on the first 10 years of the LOM to have a tractable problem.

To produce comparable results, given the conventional plan has intensive waste removal within the

10 years as planned stripping, the pit limits for the first 10 years were flagged, and the stochastic

optimizer was set to mine the entirety of blocks within the flagged pit limits. Therefore, the same

tonnages were to be extracted, and any improvement in the results is attributed to the method applied.

The first results in figure 9 refer to the scheduled total tons of material to be mined following the

extraction sequence for the stochastic plan. Unlike the conventional schedule, the stochastic strategy

uses the available mining rates, producing a more even mining production in the first 5 years. As

shown below, this does not surpass the P50 mining capacities, as was expected. Such a schedule

will, throughout the LOM, have higher chances to be realized once it does not exceed P50 capacity

values and plans tonnages in the defined low probability zones.

Next, results for the use of crusher capacities are shown in figure 10, where it is possible to see

that, once again, the stochastic schedule better uses the available capacities, preventing tonnages

above the P50 simulated crushing capacities, as set in the model, with the P50 being the accepted
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Figure 8: Visual representation of the probability zones defined by the percentiles of simu-
lated mining capacities for Mine A.

Figure 9: Risk profiles for the scheduled tonnage to be mined for the stochastic plan com-
pared to the conventional schedule for both mines.
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risk. Different from the conventional plan, the stochastic plan does not exceed the available targets

and hence produces a realizable schedule, especially for crushers CH4 and CH5, where the previous

plan forecasts tonnages that exceed the available capacities with around 10%more material for most

of the periods for CH4 and has an excess of almost 80% of the total crusher capacity in period 4 for

CH5.

For crushers CH1, CH2 and CH3, it is possible to see that the conventional plan did not forecast

material above the available capacities. However, it is possible to notice a difference between the

conventional plan and the P50-Plan forecasts, which come from the conventional schedule planning

more material to be extracted than the available mining capacity, as shown in figure 9. Even though

the planned material at these crushers does not exceed their capacity, the forecasts for years 5, 7 and

8 are still most likely not to realize for the conventional schedule since the mining capacities are

exceeded.

Figure 10: Risk profiles for the scheduled ore tonnages at the crushers CH1, CH2 and
CH3 combined (upper left), crusher CH4 (upper right) and crusher CH5 (bottom) for the
stochastic plan compared to the conventional schedule and P50-Plan from risk analysis.
P10, P50 and P90 percentiles for the simulated capacities are shown in red.
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Since the pit limits are the same, the total tonnages extracted are equal. However, the uncer-

tainty in metal grades and material types affects the absolute tonnages of ore reaching the processing

destinations. In different scenarios, a block can be classified as a different material type and have

other destinations as possible processing destinations.

Moreover, the stochastic optimizer also uses dynamic cut-off grades as opposed to the fixed

cut-offs used by the conventional plan, which also impacts the tonnages of metal recovered. Since

the input to the conventional optimization is an estimated orebody model with smoothed grades,

misrepresenting their distribution and variability, the current cut-offs used at the mining complex

tend to be higher than the ones chosen by the stochastic optimizer, which also leads to more material

sent to the waste and less metal recovered. figure 11 shows an example of the comparison between

the dynamic cut-offs chosen by the stochastic optimizer for the high-grade sulphide material from

Mine B and the fixed cut-off for the mills used in the conventional plan.

Figure 11: Comparison between the dynamic cut-off grades for the high-grade sulphide
material from Mine B and the fixed cut-off used for the mills (yellow line).

As shown in figure 12, the stochastic plan manages to advance metal extraction and recovery,

where 30% more metal is recovered at the mills, and 80% more metal is recovered at the leach pads

in the first year of operations alone. While overall, 3% less metal is recovered at the mills, the leach

pads show a total metal recovery 45% higher in the stochastic schedule. Those are direct results

of the management of grade uncertainty and dynamic cut-offs since the stochastic plan sends over
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105% more ore to the sulphide leach pad. Accounting for the uncertainty in equipment capacities

ensures that the resulting stochastic schedule is more likely to be realized.

Figure 12: Risk profiles for the total recoverable copper metal at the three mills (left) and
the leach pads (right).

All ore tonnages sent to the mills and leach pads in the stochastic and conventional schedules

respect the total capacities at those destinations in all periods. The same can be said for the stock-

piles, where the stockpiling limits are not exceeded in any period for the stochastic plan. Regarding

waste tonnages, figure 13 shows that given the material uncertainty and dynamic cut-offs used in the

stochastic optimizer, the stochastic schedule is found to send overall 19% less material to the waste

dump, another reason for higher metal recovered and higher revenue.

The more substantial amount of recoverable gold in the stochastic solution with more material

classified as ore and not being sent to the waste leads to a total of 45% higher cumulative discounted

cash flow by the end of the 10 years considered in the study when compared to the P50-Plan, as

shown in figure 14. The economic benefit is even more apparent within the first 3 years of operation

when the stochastic solution generates a cumulative discounted cash flow 52% higher than the P50-

Plan. As noted earlier, the stochastic approach that considers the supply and material uncertainty and

the uncertainty in equipment capacities can blend different levels of uncertainty to reduce risk and

increase value while producing schedules better suited to meet the available capacities and targets.
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Figure 13: The cumulative tonnage of material extracted and sent to the waste dump in the
stochastic and conventional schedules.

Figure 14: Cumulative discounted cash flow for the 10 years LOM).
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4 Conclusion

This work applied the simultaneous stochastic optimization of mining complexes with supply and

equipment capacity uncertainty to a large copper mining complex. The method was adapted to inte-

grate the uncertainty related to different sources, such as equipment production. Risk quantification

was done using stochastic simulations, which enable the assessment of the uncertainty and variabil-

ity of data, especially for geological deposits, where limited information is obtained through drilling

campaigns. Stochastic simulations are also used for modelling the uncertainty and variability of

equipment production, where historical data was used to generate the realizations. The probability

zones approach was used to include the equipment uncertainty in the framework and optimization

process. Such an approach is characterized by giving freedom to the decision-maker to choose the

level of risk accepted in the optimization process.

The current conventional schedule used at the mining complex presents significant shortfalls

in the presence of uncertainty inherent to a mining operation with several complex interconnected

components. However, the stochastic plan achieved shows to be able to manage the risk from the

different sources, especially from the material supply, generating schedules better suited to respect

the available capacities and targets while reducing risk and increasing the value of the project.

For the case study considered, results show close to 45% higher discounted cash flow by the end

of the first 10 years, translating into tens (or even hundreds) of millions of dollars for large mining

complexes. Moreover, more metal is produced, and less material is sent to the waste dump. At the

same time, the same total tonnages are extracted, which are direct benefits from incorporating the

uncertainty from different sources during the optimization process using the simultaneous stochastic

optimization method.
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